Close Menu
Fund Focus News
    Facebook X (Twitter) Instagram
    Trending
    • Mutual funds trim small-cap bets as institutional flows chase large caps – Jefferies explains what’s driving the trend – Money News
    • Debt MFs see outflow of ₹1 lakh cr in Sep on withdrawals from liquid, money market funds
    • Mutual Funds KYC: How To Check And Update Your Status, Here’s A Step-by-Step Guide | Savings and Investments News
    • ETFs vs Individual Stocks: What Should You Buy?
    • Sherry FitzGerald expands into commercial property with Knight Frank deal – The Irish Times
    • What the changing dynamics of inflation could mean for UK bond markets
    • Debt MFs witness ₹1 lakh cr outflow in September on withdrawals from liquid, money market funds
    • SBI Mutual Fund’s top 5 SIP plans – up to 20% CAGR in 10 years; Rs 10K investment turns into Rs 35 lakh – Money News
    Facebook X (Twitter) Instagram
    Fund Focus News
    • Home
    • Bonds
    • ETFs
    • Funds
    • Investments
    • Mutual Funds
    • Property Investments
    • SIP
    Fund Focus News
    Home»Bonds»Deoxygenative radical cross-coupling of C(sp3)−O/C(sp3)−H bonds promoted by hydrogen-bond interaction
    Bonds

    Deoxygenative radical cross-coupling of C(sp3)−O/C(sp3)−H bonds promoted by hydrogen-bond interaction

    August 8, 2024


  • Ertl, P. & Schuhmann, T. A systematic cheminformatics analysis of functional groups occurring in natural products. J. Nat. Prod. 82, 1258–1263 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dalton, T., Faber, T. & Glorius, F. C−H activation: toward sustainability and applications. ACS Cent. Sci. 7, 245–261 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lam, N. Y. S., Wu, K. & Yu, J.-Q. Advancing the logic of chemical synthesis: C−H activation as strategic and tactical disconnections for C−C bond construction. Angew. Chem. Int. Ed. 133, 15901–15924 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Boit, T. B., Bulger, A. S., Dander, J. E. & Garg, N. K. Activation of C−O and C−N bonds using non-precious metal catalysis. ACS Catal. 10, 12109–12126 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi, J. & Fu, G. C. Transition metal-catalyzed alkyl-alkyl bond formation: another dimension in cross-coupling chemistry. Science 356, No. eaaf7230 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Jana, R., Pathak, T. P. & Sigman, M. S. Advances in transition metal (Pd, Ni, Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners. Chem. Rev. 111, 1417–1492 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johansson Seechurn, C. C. C., Kitching, M. O., Colacot, T. J. & Snieckus, V. Palladium-catalyzed cross-coupling: a historical contextual perspective to the 2010 Nobel prize. Angew. Chem. Int. Ed. 51, 5062–5085 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, J. & Fu, G. C. Cross-couplings of unactivated secondary alkyl halides: room-temperature nickel-catalyzed Negishi reactions of alkyl bromides and iodides. J. Am. Chem. Soc. 125, 14726–14727 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Z., Yin, H. & Fu, G. C. Catalytic enantioconvergent coupling of secondary and tertiary electrophiles with olefins. Nature 563, 379–383 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huo, H., Gorsline, B. J. & Fu, G. C. Catalyst-controlled doubly enantioconvergent coupling of racemic alkyl nucleophiles and electrophiles. Science 367, 559–564 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giovannini, R., Stüdemann, T., Dussin, G. & Knochel, P. An efficient nickel-catalyzed cross-coupling between sp3 carbon centers. Angew. Chem. Int. Ed. 37, 2387–2390 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Gao, Y., Zhang, B., He, J. & Baran, P. S. Ni-electrocatalytic enantioselective doubly decarboxylative C(sp3)–C(sp3) cross coupling. J. Am. Chem. Soc. 145, 11518–11523 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, B. et al. Complex molecule synthesis by electrocatalytic decarboxylative cross-coupling. Nature 623, 745–751 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, B. et al. Ni-electrocatalytic C(sp3)–C(sp3) doubly decarboxylative coupling. Nature 606, 313–318 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang, K. & Weix, D. J. Nickel-catalyzed C(sp3)–C(sp3) cross-electrophile coupling of in situ generated NHP esters with unactivated alkyl bromides. Org. Lett. 24, 2853–2857 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, D. & Doyle, A. G. Ni/Photoredox-catalyzed C(sp3)–C(sp3) coupling between aziridines and acetals as alcohol-derived alkyl radical precursors. J. Am. Chem. Soc. 144, 20067–20077 (2022).

    Article 

    Google Scholar
     

  • Hao, Y. et al. Nickel-catalyzed enantioconvergent reductive hydroalkylation of unactivated alkenes with α-pyridyl alkyl electrophiles. ACS Catal. 13, 15633–15640 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Chen, M. & Montgomery, J. Nickel-catalyzed intermolecular enantioselective heteroaromatic C–H alkylation. ACS Catal. 12, 11015–11023 (2022).

    Article 

    Google Scholar
     

  • Canivet, J., Yamaguchi, J., Ban, I. & Itami, K. Nickel-catalyzed biaryl coupling of heteroarenes and aryl halides/triflates. Org. Lett. 11, 1733–1736 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, J., Wasa, M., Chan, K. S. L., Shao, Q. & Yu, J.-Q. Palladium-catalyzed transformations of alkyl C−H bonds. Chem. Rev. 117, 8754–8786 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gandeepan, P. & Ackermann, L. Transient directing groups for transformative C−H activation by synergistic metal catalysis. Chem 4, 199–222 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Sambiagio, C. et al. A comprehensive overview of directing groups applied in metal-catalyzed C–H functionalization chemistry. Chem. Soc. Rev. 47, 6603–6743 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rej, S., Ano, Y. & Chatani, N. An efficient tool in C–H bond functionalization chemistry for the expedient construction of C–C bonds. Chem. Rev. 120, 1788–1887 (2020). Bidentate Directing Groups.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chan, A. Y. et al. Metallaphotoredox: the merger of photoredox and transition metal catalysis. Chem. Rev. 122, 1485–1542 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Twilton, J. et al. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 1, 0052 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Shaw, M. H., Shurtleff, V. W., Terrett, J. A., Cuthbertson, J. D. & MacMillan, D. W. C. Native functionality in triple catalytic cross-coupling: sp3 C–H bonds as latent nucleophiles. Science 352, 1304–1308 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Le, C., Liang, Y., Evans, R. W., Li, X. & MacMillan, D. W. C. Selective sp3 C–H alkylation via polarity-match-based cross-coupling. Nature 547, 79–83 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perry, I. B. et al. Direct arylation of strong aliphatic C–H bonds. Nature 560, 70–75 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Che, C., Lu, Y.-N. & Wang, C.-J. Enantio- and diastereoselective De Novo synthesis of 3‑substituted proline derivatives via cooperative photoredox/Brønsted acid catalysis and epimerization. J. Am. Chem. Soc. 145, 2779–2786 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Che, C., Li, Y.-N., Cheng, X., Lu, Y.-N. & Wang, C.-J. Visible-light-enabled enantioconvergent synthesis of α-amino acid derivatives via synergistic Brønsted acid/photoredox catalysis. Angew. Chem. Int. Ed. 60, 4698–4704 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yang, L. et al. Molecular oxygen-mediated radical alkylation of C(sp3)−H bonds with boronic acids. Org. Lett. 23, 3207–3210 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Z.-H. et al. TEMPO-enabled electrochemical enantioselective oxidative coupling of secondary acyclic amines with ketones. J. Am. Chem. Soc. 143, 15599–15605 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salman, M., Zhu, Z.-Q. & Huang, Z.-Z. Dehydrogenative cross-coupling reaction between N‑aryl α‑amino acid esters and phenols or phenol derivative for synthesis of α‑aryl α‑amino acid esters. Org. Lett. 18, 1526–1529 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, X.-W. et al. Visible light catalysis assisted site-specific functionalization of amino acid derivatives by C−H bond activation without oxidant: cross-coupling hydrogen evolution reaction. ACS Catal. 5, 2391–2396 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, G., Zhang, Y. & Wang, R. Catalytic asymmetric activation of a C(sp3)−H bond adjacent to a nitrogen atom: a versatile approach to optically active α-alkyl α-amino acids and C1-alkylated tetrahydroisoquinoline derivatives. Angew. Chem. Int. Ed. 50, 10429–10432 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, L. & Li, C.-J. Functionalizing glycine derivatives by direct C–C bond formation. Angew. Chem. Int. Ed. 47, 7075–7078 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Qiu, Z. & Li, C.-J. Transformations of less-activated phenols and phenol derivatives via C–O cleavage. Chem. Rev. 120, 10454–10515 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Komeyama, K., Michiyuki, T. & Osaka, I. Nickel/Cobalt-catalyzed C(sp3)–C(sp3) cross-coupling of alkyl halides with alkyl tosylates. ACS Catal. 9, 9285–9291 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Liu, J.-H. et al. Copper-catalyzed reductive cross-coupling of nonactivated alkyl tosylates and mesylates with alkyl and aryl bromides. Chemistry 20, 15334–15338 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Greene, M. A., Yonova, I. M., Williams, F. J. & Jarvo, E. R. Traceless directing group for stereospecific nickel-catalyzed alkyl-alkyl cross-coupling reactions. Org. Lett. 14, 4293–4296 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wisniewska, H. M., Swift, E. C. & Jarvo, E. R. Functional-group-tolerant, nickel-catalyzed cross-coupling reaction for enantioselective construction of tertiary methyl-bearing stereocenters. J. Am. Chem. Soc. 135, 9083–9090 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, H.-W. et al. Asymmetric deoxygenative cyanation of benzyl alcohols enabled by synergistic photoredox and copper catalysis. Chin. J. Chem. 38, 1671–1675 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lu, F.-D. et al. Asymmetric propargylic radical cyanation enabled by dual organophotoredox and copper catalysis. J. Am. Chem. Soc. 141, 6167–6172 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sakai, A. & MacMillan, D. W. C. Nontraditional fragment couplings of alcohols and carboxylic acids: C(sp3)–C(sp3) cross-coupling via radical sorting. J. Am. Chem. Soc. 144, 6185–6192 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong, Z. & MacMillan, D. W. C. Metallaphotoredox-enabled deoxygenative arylation of alcohols. Nature 598, 451–456 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lyon, W. L. & MacMillan, D. W. C. Expedient access to underexplored chemical space: deoxygenative C(sp3)–C(sp3) cross-coupling. J. Am. Chem. Soc. 145, 7736–7742 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Intermaggio, N. E., Millet, A., Davis, D. L. & MacMillan, D. W. C. Deoxytrifluoromethylation of alcohols. J. Am. Chem. Soc. 144, 11961–11968 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schäfer, S. et al. Pyridylalanine-containing hydroxamic acids as selective HDAC6 inhibitors. ChemMedChem 4, 283–290 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Mulliken, R. S. Molecular compounds and their spectra. III. The interaction of electron donors and acceptors. J. Phys. Chem. 56, 801–822 (1952).

    Article 
    CAS 

    Google Scholar
     

  • Rosokha, S. V. & Kochi, J. K. Fresh look at electron-transfer mechanisms via the donor/acceptor bindings in the critical encounter complex. Acc. Chem. Res. 41, 641–653 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Lima, C. G. S. M., Lima, T., Duarte, M., Jurberg, I. D. & Paixão, M. W. Organic synthesis enabled by light-irradiation of EDA complexes: theoretical background and synthetic applications. ACS Catal. 6, 1389–1407 (2016).

    Article 
    CAS 

    Google Scholar
     



  • Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Telegram Email

    Related Posts

    What the changing dynamics of inflation could mean for UK bond markets

    October 22, 2025

    BOV announces issue of up to €325 million unsecured euro medium term bonds

    October 22, 2025

    Oman launches $207.9mln development bonds issue

    October 21, 2025
    Leave A Reply Cancel Reply

    Top Posts

    The Shifting Landscape of Art Investment and the Rise of Accessibility: The London Art Exchange

    September 11, 2023

    Charlie Cobham: The Art Broker Extraordinaire Maximizing Returns for High Net Worth Clients

    February 12, 2024

    Sherry FitzGerald expands into commercial property with Knight Frank deal – The Irish Times

    October 22, 2025

    The Unyielding Resilience of the Art Market: A Historical and Contemporary Perspective

    November 19, 2023
    Don't Miss
    Mutual Funds

    Mutual funds trim small-cap bets as institutional flows chase large caps – Jefferies explains what’s driving the trend – Money News

    October 22, 2025

    The Nifty 50 reached an intraday high of 25,932 on October 21, 2025, also a…

    Debt MFs see outflow of ₹1 lakh cr in Sep on withdrawals from liquid, money market funds

    October 22, 2025

    Mutual Funds KYC: How To Check And Update Your Status, Here’s A Step-by-Step Guide | Savings and Investments News

    October 22, 2025

    ETFs vs Individual Stocks: What Should You Buy?

    October 22, 2025
    Stay In Touch
    • Facebook
    • Twitter
    • Pinterest
    • Instagram
    • YouTube
    • Vimeo
    EDITOR'S PICK

    Property market poised for growth, with focus on sustainability, innovation and connectivity

    January 12, 2025

    Ethereum price could fluctuate with initial ETF inflows: Kaiko

    July 22, 2024

    SBI JanNivesh Mutual Fund: Here’s How Rs 250 Monthly SIP Can Grow To Rs 29 Lakh

    February 20, 2025
    Our Picks

    Mutual funds trim small-cap bets as institutional flows chase large caps – Jefferies explains what’s driving the trend – Money News

    October 22, 2025

    Debt MFs see outflow of ₹1 lakh cr in Sep on withdrawals from liquid, money market funds

    October 22, 2025

    Mutual Funds KYC: How To Check And Update Your Status, Here’s A Step-by-Step Guide | Savings and Investments News

    October 22, 2025
    Most Popular

    🔥Juve target Chukwuemeka, Inter raise funds, Elmas bid in play 🤑

    August 20, 2025

    💵 Libra responds after Flamengo takes legal action and ‘freezes’ funds

    September 26, 2025

    ₹10,000 monthly SIP in this mutual fund has grown to ₹1.52 crore in 22 years

    September 17, 2025
    © 2025 Fund Focus News
    • Get In Touch
    • Privacy Policy
    • Terms and Conditions

    Type above and press Enter to search. Press Esc to cancel.