Ertl, P. & Schuhmann, T. A systematic cheminformatics analysis of functional groups occurring in natural products. J. Nat. Prod. 82, 1258–1263 (2019).
Dalton, T., Faber, T. & Glorius, F. C−H activation: toward sustainability and applications. ACS Cent. Sci. 7, 245–261 (2021).
Lam, N. Y. S., Wu, K. & Yu, J.-Q. Advancing the logic of chemical synthesis: C−H activation as strategic and tactical disconnections for C−C bond construction. Angew. Chem. Int. Ed. 133, 15901–15924 (2021).
Boit, T. B., Bulger, A. S., Dander, J. E. & Garg, N. K. Activation of C−O and C−N bonds using non-precious metal catalysis. ACS Catal. 10, 12109–12126 (2020).
Choi, J. & Fu, G. C. Transition metal-catalyzed alkyl-alkyl bond formation: another dimension in cross-coupling chemistry. Science 356, No. eaaf7230 (2017).
Jana, R., Pathak, T. P. & Sigman, M. S. Advances in transition metal (Pd, Ni, Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners. Chem. Rev. 111, 1417–1492 (2011).
Johansson Seechurn, C. C. C., Kitching, M. O., Colacot, T. J. & Snieckus, V. Palladium-catalyzed cross-coupling: a historical contextual perspective to the 2010 Nobel prize. Angew. Chem. Int. Ed. 51, 5062–5085 (2012).
Zhou, J. & Fu, G. C. Cross-couplings of unactivated secondary alkyl halides: room-temperature nickel-catalyzed Negishi reactions of alkyl bromides and iodides. J. Am. Chem. Soc. 125, 14726–14727 (2003).
Wang, Z., Yin, H. & Fu, G. C. Catalytic enantioconvergent coupling of secondary and tertiary electrophiles with olefins. Nature 563, 379–383 (2018).
Huo, H., Gorsline, B. J. & Fu, G. C. Catalyst-controlled doubly enantioconvergent coupling of racemic alkyl nucleophiles and electrophiles. Science 367, 559–564 (2020).
Giovannini, R., Stüdemann, T., Dussin, G. & Knochel, P. An efficient nickel-catalyzed cross-coupling between sp3 carbon centers. Angew. Chem. Int. Ed. 37, 2387–2390 (1998).
Gao, Y., Zhang, B., He, J. & Baran, P. S. Ni-electrocatalytic enantioselective doubly decarboxylative C(sp3)–C(sp3) cross coupling. J. Am. Chem. Soc. 145, 11518–11523 (2023).
Zhang, B. et al. Complex molecule synthesis by electrocatalytic decarboxylative cross-coupling. Nature 623, 745–751 (2023).
Zhang, B. et al. Ni-electrocatalytic C(sp3)–C(sp3) doubly decarboxylative coupling. Nature 606, 313–318 (2022).
Kang, K. & Weix, D. J. Nickel-catalyzed C(sp3)–C(sp3) cross-electrophile coupling of in situ generated NHP esters with unactivated alkyl bromides. Org. Lett. 24, 2853–2857 (2022).
Sun, D. & Doyle, A. G. Ni/Photoredox-catalyzed C(sp3)–C(sp3) coupling between aziridines and acetals as alcohol-derived alkyl radical precursors. J. Am. Chem. Soc. 144, 20067–20077 (2022).
Hao, Y. et al. Nickel-catalyzed enantioconvergent reductive hydroalkylation of unactivated alkenes with α-pyridyl alkyl electrophiles. ACS Catal. 13, 15633–15640 (2023).
Chen, M. & Montgomery, J. Nickel-catalyzed intermolecular enantioselective heteroaromatic C–H alkylation. ACS Catal. 12, 11015–11023 (2022).
Canivet, J., Yamaguchi, J., Ban, I. & Itami, K. Nickel-catalyzed biaryl coupling of heteroarenes and aryl halides/triflates. Org. Lett. 11, 1733–1736 (2009).
He, J., Wasa, M., Chan, K. S. L., Shao, Q. & Yu, J.-Q. Palladium-catalyzed transformations of alkyl C−H bonds. Chem. Rev. 117, 8754–8786 (2017).
Gandeepan, P. & Ackermann, L. Transient directing groups for transformative C−H activation by synergistic metal catalysis. Chem 4, 199–222 (2018).
Sambiagio, C. et al. A comprehensive overview of directing groups applied in metal-catalyzed C–H functionalization chemistry. Chem. Soc. Rev. 47, 6603–6743 (2018).
Rej, S., Ano, Y. & Chatani, N. An efficient tool in C–H bond functionalization chemistry for the expedient construction of C–C bonds. Chem. Rev. 120, 1788–1887 (2020). Bidentate Directing Groups.
Chan, A. Y. et al. Metallaphotoredox: the merger of photoredox and transition metal catalysis. Chem. Rev. 122, 1485–1542 (2022).
Twilton, J. et al. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 1, 0052 (2017).
Shaw, M. H., Shurtleff, V. W., Terrett, J. A., Cuthbertson, J. D. & MacMillan, D. W. C. Native functionality in triple catalytic cross-coupling: sp3 C–H bonds as latent nucleophiles. Science 352, 1304–1308 (2016).
Le, C., Liang, Y., Evans, R. W., Li, X. & MacMillan, D. W. C. Selective sp3 C–H alkylation via polarity-match-based cross-coupling. Nature 547, 79–83 (2017).
Perry, I. B. et al. Direct arylation of strong aliphatic C–H bonds. Nature 560, 70–75 (2018).
Che, C., Lu, Y.-N. & Wang, C.-J. Enantio- and diastereoselective De Novo synthesis of 3‑substituted proline derivatives via cooperative photoredox/Brønsted acid catalysis and epimerization. J. Am. Chem. Soc. 145, 2779–2786 (2023).
Che, C., Li, Y.-N., Cheng, X., Lu, Y.-N. & Wang, C.-J. Visible-light-enabled enantioconvergent synthesis of α-amino acid derivatives via synergistic Brønsted acid/photoredox catalysis. Angew. Chem. Int. Ed. 60, 4698–4704 (2021).
Yang, L. et al. Molecular oxygen-mediated radical alkylation of C(sp3)−H bonds with boronic acids. Org. Lett. 23, 3207–3210 (2021).
Wang, Z.-H. et al. TEMPO-enabled electrochemical enantioselective oxidative coupling of secondary acyclic amines with ketones. J. Am. Chem. Soc. 143, 15599–15605 (2021).
Salman, M., Zhu, Z.-Q. & Huang, Z.-Z. Dehydrogenative cross-coupling reaction between N‑aryl α‑amino acid esters and phenols or phenol derivative for synthesis of α‑aryl α‑amino acid esters. Org. Lett. 18, 1526–1529 (2016).
Gao, X.-W. et al. Visible light catalysis assisted site-specific functionalization of amino acid derivatives by C−H bond activation without oxidant: cross-coupling hydrogen evolution reaction. ACS Catal. 5, 2391–2396 (2015).
Zhang, G., Zhang, Y. & Wang, R. Catalytic asymmetric activation of a C(sp3)−H bond adjacent to a nitrogen atom: a versatile approach to optically active α-alkyl α-amino acids and C1-alkylated tetrahydroisoquinoline derivatives. Angew. Chem. Int. Ed. 50, 10429–10432 (2011).
Zhao, L. & Li, C.-J. Functionalizing glycine derivatives by direct C–C bond formation. Angew. Chem. Int. Ed. 47, 7075–7078 (2008).
Qiu, Z. & Li, C.-J. Transformations of less-activated phenols and phenol derivatives via C–O cleavage. Chem. Rev. 120, 10454–10515 (2020).
Komeyama, K., Michiyuki, T. & Osaka, I. Nickel/Cobalt-catalyzed C(sp3)–C(sp3) cross-coupling of alkyl halides with alkyl tosylates. ACS Catal. 9, 9285–9291 (2019).
Liu, J.-H. et al. Copper-catalyzed reductive cross-coupling of nonactivated alkyl tosylates and mesylates with alkyl and aryl bromides. Chemistry 20, 15334–15338 (2014).
Greene, M. A., Yonova, I. M., Williams, F. J. & Jarvo, E. R. Traceless directing group for stereospecific nickel-catalyzed alkyl-alkyl cross-coupling reactions. Org. Lett. 14, 4293–4296 (2012).
Wisniewska, H. M., Swift, E. C. & Jarvo, E. R. Functional-group-tolerant, nickel-catalyzed cross-coupling reaction for enantioselective construction of tertiary methyl-bearing stereocenters. J. Am. Chem. Soc. 135, 9083–9090 (2013).
Chen, H.-W. et al. Asymmetric deoxygenative cyanation of benzyl alcohols enabled by synergistic photoredox and copper catalysis. Chin. J. Chem. 38, 1671–1675 (2020).
Lu, F.-D. et al. Asymmetric propargylic radical cyanation enabled by dual organophotoredox and copper catalysis. J. Am. Chem. Soc. 141, 6167–6172 (2019).
Sakai, A. & MacMillan, D. W. C. Nontraditional fragment couplings of alcohols and carboxylic acids: C(sp3)–C(sp3) cross-coupling via radical sorting. J. Am. Chem. Soc. 144, 6185–6192 (2022).
Dong, Z. & MacMillan, D. W. C. Metallaphotoredox-enabled deoxygenative arylation of alcohols. Nature 598, 451–456 (2021).
Lyon, W. L. & MacMillan, D. W. C. Expedient access to underexplored chemical space: deoxygenative C(sp3)–C(sp3) cross-coupling. J. Am. Chem. Soc. 145, 7736–7742 (2023).
Intermaggio, N. E., Millet, A., Davis, D. L. & MacMillan, D. W. C. Deoxytrifluoromethylation of alcohols. J. Am. Chem. Soc. 144, 11961–11968 (2022).
Schäfer, S. et al. Pyridylalanine-containing hydroxamic acids as selective HDAC6 inhibitors. ChemMedChem 4, 283–290 (2009).
Mulliken, R. S. Molecular compounds and their spectra. III. The interaction of electron donors and acceptors. J. Phys. Chem. 56, 801–822 (1952).
Rosokha, S. V. & Kochi, J. K. Fresh look at electron-transfer mechanisms via the donor/acceptor bindings in the critical encounter complex. Acc. Chem. Res. 41, 641–653 (2008).
de Lima, C. G. S. M., Lima, T., Duarte, M., Jurberg, I. D. & Paixão, M. W. Organic synthesis enabled by light-irradiation of EDA complexes: theoretical background and synthetic applications. ACS Catal. 6, 1389–1407 (2016).