Hall, D. G. Boronic Acids: Preparation and Applications in Organic Synthesis Medicine and Materials (Wiley, 2011).
Fyfe, J. W. B. & Watson, A. J. B. Recent developments in organoboron chemistry: old dogs, new tricks. Chem 3, 31–55 (2017).
Collins, B. S. L., Wilson, C. M., Myers, E. L. & Aggarwal, V. K. Asymmetric synthesis of secondary and tertiary boronic esters. Angew. Chem. Int. Ed. 56, 11700–11733 (2017).
Wang, M. & Shi, Z. Methodologies and strategies for selective borylation of C–Het and C–C bonds. Chem. Rev. 120, 7348–7398 (2020).
Bose, S. K. et al. First-row d-block element-catalyzed carbon–boron bond formation and related processes. Chem. Rev. 121, 13238–13341 (2021).
Tian, Y.-M., Guo, X.-N., Braunschweig, H., Radius, U. & Marder, T. B. Photoinduced borylation for the synthesis of organoboron compounds: focus review. Chem. Rev. 121, 3561–3597 (2021).
Volochnyuk, D. M., Gorlova, A. O. & Grygorenko, O. O. Saturated boronic acids, boronates, and trifluoroborates: an update on their synthetic and medicinal chemistry. Chem. Eur. J. 27, 15277–15326 (2021).
Tan, X. & Wang, H. Recent advances in borenium catalysis. Chem. Soc. Rev. 51, 2583–2600 (2022).
Mamada, M., Hayakawa, M., Ochi, J. & Hatakeyama, T. Organoboron-based multiple-resonance emitters: synthesis, structure–property correlations, and prospects. Chem. Soc. Rev. 53, 1624–1692 (2024).
Mkhalid, I. A. I., Barnard, J. H., Marder, T. B., Murphy, J. M. & Hartwig, J. F. C−H activation for the construction of C−B bonds. Chem. Rev. 110, 890–931 (2010).
Hartwig, J. F. Regioselectivity of the borylation of alkanes and arenes. Chem. Soc. Rev. 40, 1992 (2011).
Bisht, R. et al. Metal-catalysed C–H bond activation and borylation. Chem. Soc. Rev. 51, 5042–5100 (2022).
Yu, I. F., Wilson, J. W. & Hartwig, J. F. Transition-metal-catalyzed silylation and borylation of C–H bonds for the synthesis and functionalization of complex molecules. Chem. Rev. 123, 11619–11663 (2023).
Wright, J. S., Scott, P. J. H. & Steel, P. G. Iridium‐catalysed C−H borylation of heteroarenes: balancing steric and electronic regiocontrol. Angew. Chem. Int. Ed. 60, 2796–2821 (2021).
Kubota, K., Pang, Y., Miura, A. & Ito, H. Redox reactions of small organic molecules using ball milling and piezoelectric materials. Science 366, 1500–1504 (2019).
Oeschger, R. et al. Diverse functionalization of strong alkyl C–H bonds by undirected borylation. Science 368, 736–741 (2020).
Cao, Y., Huang, C.& Lu, Q. Photoelectrochemically driven iron-catalysed C(sp3)−H borylation of alkanes. Nat. Synth. https://doi.org/10.1038/s44160-023-00480-7 (2024).
Wang, M., Huang, Y., Hu, P. & Terminal, C. (sp3)–H borylation through intermolecular radical sampling. Science 383, 537–544 (2024).
Ros, A., Fernández, R. & Lassaletta, J. M. Functional group directed C–H borylation. Chem. Soc. Rev. 43, 3229–3243 (2014).
Sambiagio, C. et al. A comprehensive overview of directing groups applied in metal-catalysed C–H functionalisation chemistry. Chem. Soc. Rev. 47, 6603–6743 (2018).
Prokofjevs, A. & Vedejs, E. N-Directed aliphatic C–H borylation using borenium cation equivalents. J. Am. Chem. Soc. 133, 20056–20059 (2011).
Légaré, M.-A., Courtemanche, M.-A., Rochette, É. & Fontaine, F.-G. Metal-free catalytic C-H bond activation and borylation of heteroarenes. Science 349, 513–516 (2015).
Bose, S. K. & Marder, T. B. Metal-free catalytic borylation of carbon-hydrogen bonds – A leap forward in C–H functionalization. Science 349, 473–474 (2015).
Shu, C., Noble, A. & Aggarwal, V. K. Metal-free photoinduced C(sp3)–H borylation of alkanes. Nature 586, 714–719 (2020).
Kim, J. H. et al. A radical approach for the selective C–H borylation of azines. Nature 595, 677–683 (2021).
Lv, J. et al. Metal-free directed sp2-C–H borylation. Nature 575, 336–340 (2019).
Iqbal, S. A. et al. Acyl‐directed ortho ‐borylation of anilines and C7 borylation of indoles using just BBr3. Angew. Chem. Int. Ed. 58, 15381–15385 (2019).
Wang, Z. et al. Metal‐free directed C−H borylation of pyrroles. Angew. Chem. Int. Ed. 60, 8500–8504 (2021).
Rej, S. & Chatani, N. Transient imine as a directing group for the metal-free o -C–H borylation of benzaldehydes. J. Am. Chem. Soc. 143, 2920–2929 (2021).
Sadek, O. et al. Metal‐free phosphorus‐directed borylation of C(sp2)−H bonds. Angew. Chem. Int. Ed. 61, e202110102 (2022).
Zhang, X. et al. Electrophilic C–H borylation of aza[5]helicenes leading to bowl-shaped quasi-[7]circulenes with switchable dynamics. J. Am. Chem. Soc. 144, 22316–22324 (2022).
Wang, T. et al. Metal‐free stereoconvergent C−H borylation of enamides. Angew. Chem. Int. Ed. 62, e202313205 (2023).
Ashwathappa, P. K. S. et al. Metal-free directed site-selective Csp3-H borylation of saturated cyclic amines. Angew. Chem. Int. Ed. 62, e202309295 (2023).
Song, F., Gou, T., Wang, B.-Q. & Shi, Z.-J. Catalytic activations of unstrained C–C bond involving organometallic intermediates. Chem. Soc. Rev. 47, 7078–7115 (2018).
Sivaguru, P., Wang, Z., Zanoni, G. & Bi, X. Cleavage of carbon–carbon bonds by radical reactions. Chem. Soc. Rev. 48, 2615–2656 (2019).
Xia, Y. & Dong, G. Temporary or removable directing groups enable activation of unstrained C–C bonds. Nat. Rev. Chem. 4, 600–614 (2020).
Lutz, M. D. R. & Morandi, B. Metal-catalyzed carbon–carbon bond cleavage of unstrained alcohols. Chem. Rev. 121, 300–326 (2021).
Liang, Y.-F. et al. Carbon–carbon bond cleavage for late-stage functionalization. Chem. Rev. 123, 12313–12370 (2023).
De Meijere, A., Kozhushkov, S. I. & Schill, H. Three-membered-ring-based molecular architectures. Chem. Rev. 106, 4926–4996 (2006).
Chen, D. Y.-K., Pouwer, R. H. & Richard, J.-A. Recent advances in the total synthesis of cyclopropane-containing natural products. Chem. Soc. Rev. 41, 4631 (2012).
Ebner, C. & Carreira, E. M. Cyclopropanation strategies in recent total syntheses. Chem. Rev. 117, 11651–11679 (2017).
Sokolova, O. O. & Bower, J. F. Selective carbon–carbon bond cleavage of cyclopropylamine derivatives. Chem. Rev. 121, 80–109 (2021).
Cohen, Y., Cohen, A. & Marek, I. Creating stereocenters within acyclic systems by C–C bond cleavage of cyclopropanes. Chem. Rev. 121, 140–161 (2021).
Liskey, C. W. & Hartwig, J. F. Iridium-catalyzed C–H borylation of cyclopropanes. J. Am. Chem. Soc. 135, 3375–3378 (2013).
Miyamura, S. et al. Stereodivergent synthesis of arylcyclopropylamines by sequential C-H borylation and Suzuki–Miyaura coupling. Angew. Chem. Int. Ed. 54, 846–851 (2015).
Shi, Y., Yang, Y. & Xu, S. Iridium‐catalyzed enantioselective C(sp3)−H borylation of aminocyclopropanes. Angew. Chem. Int. Ed. 61, e202201463 (2022).
He, J. et al. Ligand-promoted borylation of C(sp3)‒H bonds with palladium(II) catalysts. Angew. Chem. Int. Ed. 55, 785–789 (2016).
Kondo, H. et al. σ-Bond hydroboration of cyclopropanes. J. Am. Chem. Soc. 142, 11306–11313 (2020).
Wang, Y. et al. Rhodium-catalysed selective C–C bond activation and borylation of cyclopropanes. Chem. Sci. 12, 3599–3607 (2021).
Wang, T. et al. Ligand cooperativity enables highly enantioselective C–C σ-bond hydroboration of cyclopropanes. Chem 9, 130–142 (2023).
Li, S., Jiao, H., Shu, X.-Z. & Wu, L. Zirconium and hafnium catalyzed C–C single bond hydroboration. Nat. Commun. 15, 1846 (2024).
Stirling, C. J. M. Nucleophilic eliminative ring fission. Chem. Rev. 78, 517–567 (1978).
Lyu, H. et al. Modular synthesis of 1,2-azaborines via ring-opening BN-isostere benzannulation. Nat. Chem. 16, 269–276 (2024).
Trost, B. M., Cregg, J. J. & Quach, N. Isomerization of N-allyl amides to form geometrically defined di-, tri-, and tetrasubstituted enamides. J. Am. Chem. Soc. 139, 5133–5139 (2017).
Molloy, J. J. et al. Boron-enabled geometric isomerization of alkenes via selective energy-transfer catalysis. Science 369, 302–306 (2020).
Barrett, A. G. M., Seefeld, M. A., White, A. J. P. & Williams, D. J. Convenient asymmetric syntheses of anti -β-amino alcohols. J. Org. Chem. 61, 2677–2685 (1996).
Li, J. et al. Metal-free direct deoxygenative borylation of aldehydes and ketones. J. Am. Chem. Soc. 142, 13011–13020 (2020).
Fawcett, A. et al. Photoinduced decarboxylative borylation of carboxylic acids. Science 357, 283–286 (2017).
Yu, Y.-J. et al. Sequential C–F bond functionalizations of trifluoroacetamides and acetates via spin-center shifts. Science 371, 1232–1240 (2021).
Li, S. et al. Site-fixed hydroboration of terminal and internal alkenes using BX3/iPr2Net. Angew. Chem. Int. Ed. 60, 26238–26245 (2021).
Burt, J. et al. Systematics of BX3 and BX2+ complexes (X = F, Cl, Br, I) with neutral diphosphine and diarsine ligands. Inorg. Chem. 55, 8852–8864 (2016).
Tanaka, S., Saito, Y., Yamamoto, T. & Hattori, T. Electrophilic borylation of terminal alkenes with BBr3/2,6-disubstituted Pyridines. Org. Lett. 20, 1828–1831 (2018).
Vries, T. S. D., Prokofjevs, A. & Vedejs, E. Cationic tricoordinate boron intermediates: Borenium chemistry from the organic perspective. Chem. Rev. 112, 4246–4282 (2012).
Issaian, A., Tu, K. N. & Blum, S. A. Boron–heteroatom addition reactions via borylative heterocyclization: oxyboration, aminoboration, and thioboration. Acc. Chem. Res. 50, 2598–2609 (2017).