Close Menu
Fund Focus News
    Facebook X (Twitter) Instagram
    Trending
    • More bonds teetering on the brink of junk
    • Fundsmith star Terry Smith warns index funds are ‘laying foundations of a major investment disaster’
    • XRP News Today: XRP Holds $2 as ETFs Outshine Bitcoin Flows
    • Investor flight to safety in December 2025 market trends
    • Manufacturing Funds Stumble in 2025
    • Gift Mutual Fund Units To Children Without Capital Gains Tax: Online Step-By-Step Guide | Savings and Investments News
    • VNQI vs. HAUZ: These ETFs Offer Investors Exposure to Real Estate Around the World
    • Best Mid-Cap Mutual Funds for High Growth in 2026
    Facebook X (Twitter) Instagram
    Fund Focus News
    • Home
    • Bonds
    • ETFs
    • Funds
    • Investments
    • Mutual Funds
    • Property Investments
    • SIP
    Fund Focus News
    Home»Bonds»Transforming cyclopropanes to enamides via σ-C–C bond eliminative borylation
    Bonds

    Transforming cyclopropanes to enamides via σ-C–C bond eliminative borylation

    August 27, 2024


  • Hall, D. G. Boronic Acids: Preparation and Applications in Organic Synthesis Medicine and Materials (Wiley, 2011).

  • Fyfe, J. W. B. & Watson, A. J. B. Recent developments in organoboron chemistry: old dogs, new tricks. Chem 3, 31–55 (2017).

    Article 

    Google Scholar
     

  • Collins, B. S. L., Wilson, C. M., Myers, E. L. & Aggarwal, V. K. Asymmetric synthesis of secondary and tertiary boronic esters. Angew. Chem. Int. Ed. 56, 11700–11733 (2017).

    Article 

    Google Scholar
     

  • Wang, M. & Shi, Z. Methodologies and strategies for selective borylation of C–Het and C–C bonds. Chem. Rev. 120, 7348–7398 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Bose, S. K. et al. First-row d-block element-catalyzed carbon–boron bond formation and related processes. Chem. Rev. 121, 13238–13341 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Tian, Y.-M., Guo, X.-N., Braunschweig, H., Radius, U. & Marder, T. B. Photoinduced borylation for the synthesis of organoboron compounds: focus review. Chem. Rev. 121, 3561–3597 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Volochnyuk, D. M., Gorlova, A. O. & Grygorenko, O. O. Saturated boronic acids, boronates, and trifluoroborates: an update on their synthetic and medicinal chemistry. Chem. Eur. J. 27, 15277–15326 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Tan, X. & Wang, H. Recent advances in borenium catalysis. Chem. Soc. Rev. 51, 2583–2600 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Mamada, M., Hayakawa, M., Ochi, J. & Hatakeyama, T. Organoboron-based multiple-resonance emitters: synthesis, structure–property correlations, and prospects. Chem. Soc. Rev. 53, 1624–1692 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Mkhalid, I. A. I., Barnard, J. H., Marder, T. B., Murphy, J. M. & Hartwig, J. F. C−H activation for the construction of C−B bonds. Chem. Rev. 110, 890–931 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Hartwig, J. F. Regioselectivity of the borylation of alkanes and arenes. Chem. Soc. Rev. 40, 1992 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Bisht, R. et al. Metal-catalysed C–H bond activation and borylation. Chem. Soc. Rev. 51, 5042–5100 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Yu, I. F., Wilson, J. W. & Hartwig, J. F. Transition-metal-catalyzed silylation and borylation of C–H bonds for the synthesis and functionalization of complex molecules. Chem. Rev. 123, 11619–11663 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Wright, J. S., Scott, P. J. H. & Steel, P. G. Iridium‐catalysed C−H borylation of heteroarenes: balancing steric and electronic regiocontrol. Angew. Chem. Int. Ed. 60, 2796–2821 (2021).

    Article 

    Google Scholar
     

  • Kubota, K., Pang, Y., Miura, A. & Ito, H. Redox reactions of small organic molecules using ball milling and piezoelectric materials. Science 366, 1500–1504 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Oeschger, R. et al. Diverse functionalization of strong alkyl C–H bonds by undirected borylation. Science 368, 736–741 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, Y., Huang, C.& Lu, Q. Photoelectrochemically driven iron-catalysed C(sp3)−H borylation of alkanes. Nat. Synth. https://doi.org/10.1038/s44160-023-00480-7 (2024).

  • Wang, M., Huang, Y., Hu, P. & Terminal, C. (sp3)–H borylation through intermolecular radical sampling. Science 383, 537–544 (2024).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ros, A., Fernández, R. & Lassaletta, J. M. Functional group directed C–H borylation. Chem. Soc. Rev. 43, 3229–3243 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Sambiagio, C. et al. A comprehensive overview of directing groups applied in metal-catalysed C–H functionalisation chemistry. Chem. Soc. Rev. 47, 6603–6743 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prokofjevs, A. & Vedejs, E. N-Directed aliphatic C–H borylation using borenium cation equivalents. J. Am. Chem. Soc. 133, 20056–20059 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Légaré, M.-A., Courtemanche, M.-A., Rochette, É. & Fontaine, F.-G. Metal-free catalytic C-H bond activation and borylation of heteroarenes. Science 349, 513–516 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Bose, S. K. & Marder, T. B. Metal-free catalytic borylation of carbon-hydrogen bonds – A leap forward in C–H functionalization. Science 349, 473–474 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Shu, C., Noble, A. & Aggarwal, V. K. Metal-free photoinduced C(sp3)–H borylation of alkanes. Nature 586, 714–719 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kim, J. H. et al. A radical approach for the selective C–H borylation of azines. Nature 595, 677–683 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Lv, J. et al. Metal-free directed sp2-C–H borylation. Nature 575, 336–340 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Iqbal, S. A. et al. Acyl‐directed ortho ‐borylation of anilines and C7 borylation of indoles using just BBr3. Angew. Chem. Int. Ed. 58, 15381–15385 (2019).

    Article 

    Google Scholar
     

  • Wang, Z. et al. Metal‐free directed C−H borylation of pyrroles. Angew. Chem. Int. Ed. 60, 8500–8504 (2021).

    Article 

    Google Scholar
     

  • Rej, S. & Chatani, N. Transient imine as a directing group for the metal-free o -C–H borylation of benzaldehydes. J. Am. Chem. Soc. 143, 2920–2929 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Sadek, O. et al. Metal‐free phosphorus‐directed borylation of C(sp2)−H bonds. Angew. Chem. Int. Ed. 61, e202110102 (2022).

    Article 

    Google Scholar
     

  • Zhang, X. et al. Electrophilic C–H borylation of aza[5]helicenes leading to bowl-shaped quasi-[7]circulenes with switchable dynamics. J. Am. Chem. Soc. 144, 22316–22324 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, T. et al. Metal‐free stereoconvergent C−H borylation of enamides. Angew. Chem. Int. Ed. 62, e202313205 (2023).

    Article 

    Google Scholar
     

  • Ashwathappa, P. K. S. et al. Metal-free directed site-selective Csp3-H borylation of saturated cyclic amines. Angew. Chem. Int. Ed. 62, e202309295 (2023).

    Article 

    Google Scholar
     

  • Song, F., Gou, T., Wang, B.-Q. & Shi, Z.-J. Catalytic activations of unstrained C–C bond involving organometallic intermediates. Chem. Soc. Rev. 47, 7078–7115 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Sivaguru, P., Wang, Z., Zanoni, G. & Bi, X. Cleavage of carbon–carbon bonds by radical reactions. Chem. Soc. Rev. 48, 2615–2656 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Xia, Y. & Dong, G. Temporary or removable directing groups enable activation of unstrained C–C bonds. Nat. Rev. Chem. 4, 600–614 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lutz, M. D. R. & Morandi, B. Metal-catalyzed carbon–carbon bond cleavage of unstrained alcohols. Chem. Rev. 121, 300–326 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Liang, Y.-F. et al. Carbon–carbon bond cleavage for late-stage functionalization. Chem. Rev. 123, 12313–12370 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • De Meijere, A., Kozhushkov, S. I. & Schill, H. Three-membered-ring-based molecular architectures. Chem. Rev. 106, 4926–4996 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, D. Y.-K., Pouwer, R. H. & Richard, J.-A. Recent advances in the total synthesis of cyclopropane-containing natural products. Chem. Soc. Rev. 41, 4631 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Ebner, C. & Carreira, E. M. Cyclopropanation strategies in recent total syntheses. Chem. Rev. 117, 11651–11679 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Sokolova, O. O. & Bower, J. F. Selective carbon–carbon bond cleavage of cyclopropylamine derivatives. Chem. Rev. 121, 80–109 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Cohen, Y., Cohen, A. & Marek, I. Creating stereocenters within acyclic systems by C–C bond cleavage of cyclopropanes. Chem. Rev. 121, 140–161 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Liskey, C. W. & Hartwig, J. F. Iridium-catalyzed C–H borylation of cyclopropanes. J. Am. Chem. Soc. 135, 3375–3378 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Miyamura, S. et al. Stereodivergent synthesis of arylcyclopropylamines by sequential C-H borylation and Suzuki–Miyaura coupling. Angew. Chem. Int. Ed. 54, 846–851 (2015).

    Article 

    Google Scholar
     

  • Shi, Y., Yang, Y. & Xu, S. Iridium‐catalyzed enantioselective C(sp3)−H borylation of aminocyclopropanes. Angew. Chem. Int. Ed. 61, e202201463 (2022).

    Article 
    ADS 

    Google Scholar
     

  • He, J. et al. Ligand-promoted borylation of C(sp3)‒H bonds with palladium(II) catalysts. Angew. Chem. Int. Ed. 55, 785–789 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Kondo, H. et al. σ-Bond hydroboration of cyclopropanes. J. Am. Chem. Soc. 142, 11306–11313 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. Rhodium-catalysed selective C–C bond activation and borylation of cyclopropanes. Chem. Sci. 12, 3599–3607 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, T. et al. Ligand cooperativity enables highly enantioselective C–C σ-bond hydroboration of cyclopropanes. Chem 9, 130–142 (2023).

    Article 

    Google Scholar
     

  • Li, S., Jiao, H., Shu, X.-Z. & Wu, L. Zirconium and hafnium catalyzed C–C single bond hydroboration. Nat. Commun. 15, 1846 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stirling, C. J. M. Nucleophilic eliminative ring fission. Chem. Rev. 78, 517–567 (1978).

    Article 

    Google Scholar
     

  • Lyu, H. et al. Modular synthesis of 1,2-azaborines via ring-opening BN-isostere benzannulation. Nat. Chem. 16, 269–276 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Trost, B. M., Cregg, J. J. & Quach, N. Isomerization of N-allyl amides to form geometrically defined di-, tri-, and tetrasubstituted enamides. J. Am. Chem. Soc. 139, 5133–5139 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Molloy, J. J. et al. Boron-enabled geometric isomerization of alkenes via selective energy-transfer catalysis. Science 369, 302–306 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Barrett, A. G. M., Seefeld, M. A., White, A. J. P. & Williams, D. J. Convenient asymmetric syntheses of anti -β-amino alcohols. J. Org. Chem. 61, 2677–2685 (1996).

    Article 
    PubMed 

    Google Scholar
     

  • Li, J. et al. Metal-free direct deoxygenative borylation of aldehydes and ketones. J. Am. Chem. Soc. 142, 13011–13020 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Fawcett, A. et al. Photoinduced decarboxylative borylation of carboxylic acids. Science 357, 283–286 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Yu, Y.-J. et al. Sequential C–F bond functionalizations of trifluoroacetamides and acetates via spin-center shifts. Science 371, 1232–1240 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Li, S. et al. Site-fixed hydroboration of terminal and internal alkenes using BX3/iPr2Net. Angew. Chem. Int. Ed. 60, 26238–26245 (2021).

    Article 

    Google Scholar
     

  • Burt, J. et al. Systematics of BX3 and BX2+ complexes (X = F, Cl, Br, I) with neutral diphosphine and diarsine ligands. Inorg. Chem. 55, 8852–8864 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Tanaka, S., Saito, Y., Yamamoto, T. & Hattori, T. Electrophilic borylation of terminal alkenes with BBr3/2,6-disubstituted Pyridines. Org. Lett. 20, 1828–1831 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Vries, T. S. D., Prokofjevs, A. & Vedejs, E. Cationic tricoordinate boron intermediates: Borenium chemistry from the organic perspective. Chem. Rev. 112, 4246–4282 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Issaian, A., Tu, K. N. & Blum, S. A. Boron–heteroatom addition reactions via borylative heterocyclization: oxyboration, aminoboration, and thioboration. Acc. Chem. Res. 50, 2598–2609 (2017).

    Article 
    PubMed 

    Google Scholar
     



  • Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Telegram Email

    Related Posts

    More bonds teetering on the brink of junk

    January 11, 2026

    What They Are, How They Work, and Their Categories

    January 10, 2026

    Key Risks Every Investor Should Know

    January 10, 2026
    Leave A Reply Cancel Reply

    Top Posts

    The Shifting Landscape of Art Investment and the Rise of Accessibility: The London Art Exchange

    September 11, 2023

    Charlie Cobham: The Art Broker Extraordinaire Maximizing Returns for High Net Worth Clients

    February 12, 2024

    The Unyielding Resilience of the Art Market: A Historical and Contemporary Perspective

    November 19, 2023

    More bonds teetering on the brink of junk

    January 11, 2026
    Don't Miss
    Bonds

    More bonds teetering on the brink of junk

    January 11, 2026

    About US$55 billion of US corporate bonds migrated from investment-grade to junk status in 2025[NEW…

    Fundsmith star Terry Smith warns index funds are ‘laying foundations of a major investment disaster’

    January 11, 2026

    XRP News Today: XRP Holds $2 as ETFs Outshine Bitcoin Flows

    January 10, 2026

    Investor flight to safety in December 2025 market trends

    January 10, 2026
    Stay In Touch
    • Facebook
    • Twitter
    • Pinterest
    • Instagram
    • YouTube
    • Vimeo
    EDITOR'S PICK

    Sip Sustainably With This Eco-Friendly Paper Pulp Briefcase That Keeps Your Drink Hot Or Cold!

    October 25, 2024

    Exchanges Hold the Trigger as Solana and XRP ETFs Wait for Shutdown to End

    October 13, 2025

    NFO: Edelweiss Mutual Fund launches Edelweiss Low Duration Fund – Check details – Money News

    March 11, 2025
    Our Picks

    More bonds teetering on the brink of junk

    January 11, 2026

    Fundsmith star Terry Smith warns index funds are ‘laying foundations of a major investment disaster’

    January 11, 2026

    XRP News Today: XRP Holds $2 as ETFs Outshine Bitcoin Flows

    January 10, 2026
    Most Popular

    🔥Juve target Chukwuemeka, Inter raise funds, Elmas bid in play 🤑

    August 20, 2025

    💵 Libra responds after Flamengo takes legal action and ‘freezes’ funds

    September 26, 2025

    ₹10,000 monthly SIP in this mutual fund has grown to ₹1.52 crore in 22 years

    September 17, 2025
    © 2026 Fund Focus News
    • Get In Touch
    • Privacy Policy
    • Terms and Conditions

    Type above and press Enter to search. Press Esc to cancel.