Close Menu
Fund Focus News
    Facebook X (Twitter) Instagram
    Trending
    • Mutual funds are taking cash calls—but are they working?
    • Investing in CIBC mutual funds
    • How To Buy Direct Mutual Funds Online In India | Business News
    • Top 3 Tax-saving ELSS Mutual Funds with Highest Returns: Rs 3.5 lakh invested in No. 1 fund has grown to Rs 12.66 lakh in just 5 years
    • Lum Sum vs Income Tax vs Inflation: What will be value of your Rs 1 lakh mutual fund investment in 20 years after paying tax, adjusting to inflation?
    • Invesco MF launches Income Plus Arbitrage Active Fund of Fund
    • SBI Mutual Fund launches AI chatbot ‘SmartAssist’ for WhatsApp-based investing
    • Lombard Odier & Cie s’associe à BlueBay pour lancer un fonds sur les obligations souveraines
    Facebook X (Twitter) Instagram
    Fund Focus News
    • Home
    • Bonds
    • ETFs
    • Funds
    • Investments
    • Mutual Funds
    • Property Investments
    • SIP
    Fund Focus News
    Home»Bonds»Direct oxygen insertion into C-C bond of styrenes with air
    Bonds

    Direct oxygen insertion into C-C bond of styrenes with air

    October 18, 2024


  • Jurczyk, J. et al. Single-atom logic for heterocycle editing. Nat. Synth. 1, 352–364 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, H. et al. Dearomative ring expansion of thiophenes by bicyclobutane insertion. Science 381, 75–81 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Patel, S. C. & Burns, N. Z. Conversion of aryl azides to aminopyridines. J. Am. Chem. Soc. 144, 17797–17802 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pearson, T. J. et al. Aromatic nitrogen scanning by ipso-selective nitrene internalization. Science 381, 1474–1479 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woo, J., Stein, C., Christian, A. H. & Levin, M. D. Carbon-tonitrogen single-atom transmutation of azaarenes. Nature 623, 77–82 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen, H. M. H. et al. Synthesis of 15N-Pyridines and higher mass isotopologs via Zincke Imine intermediates. J. Am. Chem. Soc. 146, 2944–2949 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tolchin, Z. A. & Smith, J. M. 15NRORC: An azine labeling protocol. J. Am. Chem. Soc. 146, 2939–2943 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jurczyk, J. et al. Photomediated ring contraction of saturated heterocycles. Science 373, 1004–1012 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, Q. et al. Skeletal editing of pyridines through atom-pair swap from CN to CC. Nat. Chem. 16, 741–748 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lyu, H., Kevlishvili, I., Yu, X., Liu, P. & Dong, G. Boron insertion into alkyl ether bonds via Zinc/Nickel tandem catalysis. Science 372, 175–182 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X. et al. Angew. Chem. Int. Ed. 63, e202318613 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Dherange, B. D., Kelly, P. Q., Liles, J. P., Sigman, M. S. & Levin, M. D. Carbon atom insertion into pyrroles and indoles promoted by chlorodiazirines. J. Am. Chem. Soc. 143, 11337–11344 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hyland, E. E., Kelly, P. Q., McKillop, A. M., Dherange, B. D. & Levin, M. D. Unified access to pyrimidines and quinazolines enabled by N−N cleaving carbon atom insertion. J. Am. Chem. Soc. 144, 19258–19264 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piacentini, P., Bingham, T. W. & Sarlah, D. Dearomative ring expansion of polycyclic arenes. Angew. Chem., Int. Ed. 61, e202208014 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Joynson, B. W., Cumming, G. R. & Ball, L. T. Photochemically mediated ring expansion of indoles and pyrroles with chlorodiazirines: synthetic methodology and thermal hazard assessment. Angew. Chem., Int. Ed. 62, e202305081 (2023).

    Article 

    Google Scholar
     

  • Fujimoto, H., Nakayasu, B. & Tobisu, M. Synthesis of γ-Lactams from acrylamides by single-carbon atom doping annulation. J. Am. Chem. Soc. 145, 19518–19522 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, L. et al. Dearomative Insertion of fluoroalkyl carbenes into azoles leading to fluoroalkyl heterocycles with a quaternary center. Angew. Chem. Int. Ed. 63, e202313807 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Kelly, P. Q., Filatov, A. S. & Levin, M. D. A synthetic cycle for heteroarene synthesis by nitride insertion. Angew. Chem., Int. Ed. 61, e202213041 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Reisenbauer, J. C., Green, O., Franchino, A., Finkelstein, P. & Morandi, B. Late-stage diversification of indole skeletons through nitrogen atom insertion. Science 377, 1104–1109 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Boudry, E., Bourdreux, F., Marrot, J., Moreau, X. & Ghiazza, C. Dearomatization of pyridines: photochemical skeletal enlargement for the synthesis of 1,2-Diazepines. J. Am. Chem. Soc. 146, 2845–2854 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, J., Lu, H., He, Y., Jing, C. & Wei, H. Cobalt-catalyzed nitrogen atom insertion in arylcycloalkenes. J. Am. Chem. Soc. 144, 22433–22439 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bartholomew, G. L., Carpaneto, F. & Sarpong, R. Skeletal editing of pyrimidines to pyrazoles by formal carbon deletion. J. Am. Chem. Soc. 144, 22309–22315 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woo, J. et al. Scaffold hopping by net photochemical carbon deletion of azaarenes. Science 376, 527–532 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kennedy, S. H., Dherange, B. D., Berger, K. J. & Levin, M. D. Skeletal editing through direct nitrogen deletion of secondary amines. Nature 593, 223–227 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hui, C., Brieger, L., Strohmann, C. & Antonchick, A. P. Stereoselective synthesis of cyclobutanes by contraction of pyrrolidines. J. Am. Chem. Soc. 143, 18864–18870 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qin, H. et al. N-atom deletion in nitrogen heterocycles. Angew. Chem. Int. Ed. 60, 20678–20683 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wright, B. A. et al. Skeletal editing approach to bridge-functionalized Bicyclo[1.1.1]pentanes from Azabicyclo[2.1.1]hexanes. J. Am. Chem. Soc. 145, 10960–10966 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, Z.-C. & Shi, Z.-J. Deoxygenation of ethers to form carbon-carbon bonds via nickel catalysis. J. Am. Chem. Soc. 139, 6546–6549 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Evano, G., Wang, J. & Nitelet, A. Metal-mediated C-O bond forming reactions in natural product synthesis. Org. Chem. Front. 4, 2480–2499 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Enthaler, S. & Company, A. Palladium-catalysed hydroxylation and alkoxylation. Chem. Soc. Rev. 40, 4912–4924 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roughley, S. D. & Jordan, A. M. The medicinal chemist’s toolbox: An analysis of reactions used in the pursuit of drug candidates. J. Med. Chem. 54, 3451–3479 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kelley, B. T., Walters, J. C. & Wengryniuk, S. E. Access to diverse oxygen heterocycles via oxidative rearrangement of benzylic tertiary alcohols. Org. Lett. 18, 1896–1899 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baeyer, A. & Villiger, V. Reactivity of Caro’s reagents with ketones. Ber. Dtsch. Chem. Ges. 32, 3625–3633 (1899).

    Article 

    Google Scholar
     

  • Baeyer, A. & Villiger, V. On the reactivity of Caro’s reagents with ketones. Ber. Dtsch. Chem. Ges. 33, 858–864 (1900).

    Article 
    CAS 

    Google Scholar
     

  • Siddiqi, Z., Wertjes, W. C. & Sarlah, D. Chemical equivalent of arene monooxygenases: dearomative synthesis of arene oxides and oxepines. J. Am. Chem. Soc. 142, 10125–10131 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, W. & Jiang, H. Palladium catalyzed oxidation of unsaturated hydrocarbons using molecular oxygen. Acc. Chem. Res. 45, 1736–1748 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang, C., Qiu, X., Cheng, Z. & Jiao, N. Molecular oxygen-mediated oxygenation reactions involving radicals. Chem. Soc. Rev. 50, 8067–8101 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Punniyamurthy, T., Velusamy, S. & Iqbal, J. Recent advances in transition metal catalyzed oxidation of organic substrates with molecular oxygen. Chem. Rev. 105, 2329–2363 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang, Y.-F. & Jiao, N. Oxygenation via C−H/C−C bond activation with molecular oxygen. Acc. Chem. Res. 50, 1640–1653 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, D., Weinstein, A. B., White, P. B. & Stahl, S. S. Ligand promoted palladium-catalyzed aerobic oxidation reactions. Chem. Rev. 118, 2636–2679 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vaughan, B. A., Webster-Gardiner, M. S., Cundari, T. R. & Gunnoe, T. B. A rhodium catalyst for single-step styrene production from benzene and ethylene. Science 348, 421–424 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Baumann, H. et al. Natural fats and oils-renewable raw Materials for the chemical industry. Angew. Chem. Int. Ed. 27, 41–62 (1988).

    Article 
    ADS 

    Google Scholar
     

  • Corma, A., Iborra, S. & Velty, A. Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107, 2411–2502 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smidt, J. et al. The oxidation of olefins with palladium chloride catalysts. Angew. Chem., Int. Ed. 1, 80–88 (1962).

    Article 

    Google Scholar
     

  • Jira, R. Acetaldehyde from Ethylene-A retrospective on the discovery of the Wacker process. Angew. Chem., Int. Ed. 48, 9034–9037 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Hess, J. S., Leelasubcharoen, S., Rheingold, A. L., Doren, D. J. & Theopold, K. H. Spin surface crossing in chromium-mediated Olefin Epoxidation with O2. J. Am. Chem. Soc. 124, 2454–2455 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schröder, K. et al. A biomimetic iron catalyst for the Epoxidation of Olefins with molecular oxygen at room temperature. Angew. Chem., Int. Ed. 50, 1425–1429 (2011).

    Article 

    Google Scholar
     

  • Koya, S., Nishioka, Y., Mizoguchi, H., Uchida, T. & Katsuki, T. Asymmetric Epoxidation of conjugated Olefins with dioxygen. Angew. Chem., Int. Ed. 51, 8243–8246 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, B. et al. Selective aerobic oxygenation of tertiary allylic alcohols with molecular oxygen. Angew. Chem. Int. Ed. 58, 11028–11032 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Urgoitia, G., SanMartin, R., Herrero, M. T. & Dominguez, E. Aerobic cleavage of alkenes and alkynes into carbonyl and carboxyl compounds. ACS Catal. 7, 3050–3060 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Rajagopalan, A., Lara, M. & Kroutil, W. Oxidative alkene cleavage by chemical and enzymatic methods. Adv. Synth. Catal. 355, 3321–3335 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Nakamura, A. & Nakada, M. Allylic oxidations in natural product synthesis. Synthesis 45, 1421–1451 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Catino, A. J., Forslund, R. E. & Doyle, M. P. Dirhodium(II) Caprolactamate: An exceptional catalyst for allylic oxidation. J. Am. Chem. Soc. 126, 13622–13623 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, J.-Q. & Corey, E. J. A mild, catalytic, and highly selective method for the oxidation of α,β-Enones to 1,4-Enediones. J. Am. Chem. Soc. 125, 3232–3233 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y., Chen, X., Jin, H. & Wang, Y. Mild and Practical Dirhodium(II)/NHPI-mediated allylic and benzylic oxidations with air as the oxidant. Chem. -Eur. J. 25, 14273–14277 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Horn, E. J. et al. Scalable and sustainable electrochemical allylic C−H oxidation. Nature 533, 77–81 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, C. et al. Visible-light-enabled allylic C−H Oxidation: metal-free photocatalytic generation of enones. ACS Catal. 12, 1375–1381 (2022).

    Article 

    Google Scholar
     

  • Jiang, Y., Chen, S., Chen, Y., Gu, A. & Tang, C. Sustainable aerobic allylic C−H bond oxidation with heterogeneous iron catalyst. J. Am. Chem. Soc. 146, 2769–2778 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Youn, S. W., Kim, B. S. & Jagdale, A. R. Pd-catalyzed sequential C-C bond formation and cleavage: evidence for an unexpected generation pf Arylpalladium(II) species. J. Am. Chem. Soc. 134, 11308–11311 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ye, J. et al. Remote C-H alkylation and C-C bond cleavage enabled by an in situ generated palladacycle. Nat. Chem. 9, 361–368 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, J. J., Wei, D. H., Duan, Z. & Mathey, F. Cleavage of the Inert C(sp2)-Ar σ-bond of alkenes by a spatial constrained interaction with Phosphinidene. J. Am. Chem. Soc. 142, 20973–20978 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, J. et al. Selective Dealkenylative functionalization of styrenes via C-C bond cleavage. Research 2020, 7947029 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lasso, J. D. et al. A general platform for visible light sulfonylation reactions enabled by catalytic Triarylamine EDA complexes. J. Am. Chem. Soc. 146, 2583–2592 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, G., Lim, S., Musaev, D. G. & Ngai, M. Y. Expanding reaction profile of allyl carboxylates via 1,2-Radical Migration (RaM): Visible-light-induced phosphine-catalyzed 1,3-Carbobromination of Allyl carboxylates. J. Am. Chem. Soc. 145, 8275–8284 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Chen, Z.-M., Zhang, X.-M. & Tu, Y.-Q. Radical aryl migration reactions and synthetic applications. Chem. Soc. Rev. 44, 5220–5245 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Studer, A. & Bossart, M. Radical aryl migration reactions. Tetrahedron 57, 9649–9667 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Smeu, M. & DiLabio, G. A. Rearrangement of the 1,1-Diphenylethoxyl radical is not concerted but occurs through a bridged intermediate. J. Org. Chem. 72, 4520–4523 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salamone, M., Bietti, M., Calcagni, A. & Gente, G. Phenyl bridging in ring-substituted cumyloxyl radicals. a product and time-resolved kinetic study. Org. Lett. 11, 2453–2456 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bietti, M., Calcagni, A., Cicero, D. O., Martella, R. & Salamone, M. The O-neophyl rearrangement of 1,1-diarylalkoxyl radicals. Experimental evidence for the formation of an intermediate 1-oxaspiro[2,5]octadienyl radical. Tetrahedron Lett. 51, 4129–4131 (2010).

    Article 
    CAS 

    Google Scholar
     



  • Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Telegram Email

    Related Posts

    Lombard Odier & Cie s’associe à BlueBay pour lancer un fonds sur les obligations souveraines

    July 2, 2025

    Commercialisation du fond Eiffel High Yield Low Carbon

    July 1, 2025

    Voici nos 12 idées de sorties à Lille et dans ses alentours pour ce dimanche 29 juin

    June 28, 2025
    Leave A Reply Cancel Reply

    Top Posts

    Mutual funds are taking cash calls—but are they working?

    July 2, 2025

    Qu’est-ce qu’un green bond ?

    December 7, 2017

    les cat’ bonds deviennent incontournables

    September 5, 2018

    Quel est le rôle du service des impôts des particuliers (SIP) ?

    May 7, 2020
    Don't Miss
    Mutual Funds

    Mutual funds are taking cash calls—but are they working?

    July 2, 2025

    Indian equity mutual funds are sitting on more cash than usual. As of April 2025,…

    Investing in CIBC mutual funds

    July 2, 2025

    How To Buy Direct Mutual Funds Online In India | Business News

    July 2, 2025

    Top 3 Tax-saving ELSS Mutual Funds with Highest Returns: Rs 3.5 lakh invested in No. 1 fund has grown to Rs 12.66 lakh in just 5 years

    July 2, 2025
    Stay In Touch
    • Facebook
    • Twitter
    • Pinterest
    • Instagram
    • YouTube
    • Vimeo
    EDITOR'S PICK

    Fixed Deposits Vs Low-Risk Funds: Where You Should Park Your Money | Business News

    June 28, 2025

    These 2 ETFs Let You Invest in the S&P 500 Without Too Much of the “Magnificent Seven”

    February 14, 2025

    SEC sues Cumberland DRW for acting as an unregistered securities broker, what does this mean for Solana ETFs?

    October 10, 2024
    Our Picks

    Mutual funds are taking cash calls—but are they working?

    July 2, 2025

    Investing in CIBC mutual funds

    July 2, 2025

    How To Buy Direct Mutual Funds Online In India | Business News

    July 2, 2025
    Most Popular

    ₹10,000 monthly SIP in this debt mutual fund has grown to over ₹70 lakh in 23 years

    June 13, 2025

    ₹1 lakh investment in these 2 ELSS mutual funds at launch would have grown to over ₹5 lakh. Check details

    April 25, 2025

    ZIG, BUZZ, NANC, and KRUZ

    October 11, 2024
    © 2025 Fund Focus News
    • Get In Touch
    • Privacy Policy
    • Terms and Conditions

    Type above and press Enter to search. Press Esc to cancel.