Jurczyk, J. et al. Single-atom logic for heterocycle editing. Nat. Synth. 1, 352–364 (2022).
Wang, H. et al. Dearomative ring expansion of thiophenes by bicyclobutane insertion. Science 381, 75–81 (2023).
Patel, S. C. & Burns, N. Z. Conversion of aryl azides to aminopyridines. J. Am. Chem. Soc. 144, 17797–17802 (2022).
Pearson, T. J. et al. Aromatic nitrogen scanning by ipso-selective nitrene internalization. Science 381, 1474–1479 (2023).
Woo, J., Stein, C., Christian, A. H. & Levin, M. D. Carbon-tonitrogen single-atom transmutation of azaarenes. Nature 623, 77–82 (2023).
Nguyen, H. M. H. et al. Synthesis of 15N-Pyridines and higher mass isotopologs via Zincke Imine intermediates. J. Am. Chem. Soc. 146, 2944–2949 (2024).
Tolchin, Z. A. & Smith, J. M. 15NRORC: An azine labeling protocol. J. Am. Chem. Soc. 146, 2939–2943 (2024).
Jurczyk, J. et al. Photomediated ring contraction of saturated heterocycles. Science 373, 1004–1012 (2021).
Cheng, Q. et al. Skeletal editing of pyridines through atom-pair swap from CN to CC. Nat. Chem. 16, 741–748 (2024).
Lyu, H., Kevlishvili, I., Yu, X., Liu, P. & Dong, G. Boron insertion into alkyl ether bonds via Zinc/Nickel tandem catalysis. Science 372, 175–182 (2021).
Zhang, X. et al. Angew. Chem. Int. Ed. 63, e202318613 (2024).
Dherange, B. D., Kelly, P. Q., Liles, J. P., Sigman, M. S. & Levin, M. D. Carbon atom insertion into pyrroles and indoles promoted by chlorodiazirines. J. Am. Chem. Soc. 143, 11337–11344 (2021).
Hyland, E. E., Kelly, P. Q., McKillop, A. M., Dherange, B. D. & Levin, M. D. Unified access to pyrimidines and quinazolines enabled by N−N cleaving carbon atom insertion. J. Am. Chem. Soc. 144, 19258–19264 (2022).
Piacentini, P., Bingham, T. W. & Sarlah, D. Dearomative ring expansion of polycyclic arenes. Angew. Chem., Int. Ed. 61, e202208014 (2022).
Joynson, B. W., Cumming, G. R. & Ball, L. T. Photochemically mediated ring expansion of indoles and pyrroles with chlorodiazirines: synthetic methodology and thermal hazard assessment. Angew. Chem., Int. Ed. 62, e202305081 (2023).
Fujimoto, H., Nakayasu, B. & Tobisu, M. Synthesis of γ-Lactams from acrylamides by single-carbon atom doping annulation. J. Am. Chem. Soc. 145, 19518–19522 (2023).
Li, L. et al. Dearomative Insertion of fluoroalkyl carbenes into azoles leading to fluoroalkyl heterocycles with a quaternary center. Angew. Chem. Int. Ed. 63, e202313807 (2024).
Kelly, P. Q., Filatov, A. S. & Levin, M. D. A synthetic cycle for heteroarene synthesis by nitride insertion. Angew. Chem., Int. Ed. 61, e202213041 (2022).
Reisenbauer, J. C., Green, O., Franchino, A., Finkelstein, P. & Morandi, B. Late-stage diversification of indole skeletons through nitrogen atom insertion. Science 377, 1104–1109 (2022).
Boudry, E., Bourdreux, F., Marrot, J., Moreau, X. & Ghiazza, C. Dearomatization of pyridines: photochemical skeletal enlargement for the synthesis of 1,2-Diazepines. J. Am. Chem. Soc. 146, 2845–2854 (2024).
Wang, J., Lu, H., He, Y., Jing, C. & Wei, H. Cobalt-catalyzed nitrogen atom insertion in arylcycloalkenes. J. Am. Chem. Soc. 144, 22433–22439 (2022).
Bartholomew, G. L., Carpaneto, F. & Sarpong, R. Skeletal editing of pyrimidines to pyrazoles by formal carbon deletion. J. Am. Chem. Soc. 144, 22309–22315 (2022).
Woo, J. et al. Scaffold hopping by net photochemical carbon deletion of azaarenes. Science 376, 527–532 (2022).
Kennedy, S. H., Dherange, B. D., Berger, K. J. & Levin, M. D. Skeletal editing through direct nitrogen deletion of secondary amines. Nature 593, 223–227 (2021).
Hui, C., Brieger, L., Strohmann, C. & Antonchick, A. P. Stereoselective synthesis of cyclobutanes by contraction of pyrrolidines. J. Am. Chem. Soc. 143, 18864–18870 (2021).
Qin, H. et al. N-atom deletion in nitrogen heterocycles. Angew. Chem. Int. Ed. 60, 20678–20683 (2021).
Wright, B. A. et al. Skeletal editing approach to bridge-functionalized Bicyclo[1.1.1]pentanes from Azabicyclo[2.1.1]hexanes. J. Am. Chem. Soc. 145, 10960–10966 (2023).
Cao, Z.-C. & Shi, Z.-J. Deoxygenation of ethers to form carbon-carbon bonds via nickel catalysis. J. Am. Chem. Soc. 139, 6546–6549 (2017).
Evano, G., Wang, J. & Nitelet, A. Metal-mediated C-O bond forming reactions in natural product synthesis. Org. Chem. Front. 4, 2480–2499 (2017).
Enthaler, S. & Company, A. Palladium-catalysed hydroxylation and alkoxylation. Chem. Soc. Rev. 40, 4912–4924 (2011).
Roughley, S. D. & Jordan, A. M. The medicinal chemist’s toolbox: An analysis of reactions used in the pursuit of drug candidates. J. Med. Chem. 54, 3451–3479 (2011).
Kelley, B. T., Walters, J. C. & Wengryniuk, S. E. Access to diverse oxygen heterocycles via oxidative rearrangement of benzylic tertiary alcohols. Org. Lett. 18, 1896–1899 (2016).
Baeyer, A. & Villiger, V. Reactivity of Caro’s reagents with ketones. Ber. Dtsch. Chem. Ges. 32, 3625–3633 (1899).
Baeyer, A. & Villiger, V. On the reactivity of Caro’s reagents with ketones. Ber. Dtsch. Chem. Ges. 33, 858–864 (1900).
Siddiqi, Z., Wertjes, W. C. & Sarlah, D. Chemical equivalent of arene monooxygenases: dearomative synthesis of arene oxides and oxepines. J. Am. Chem. Soc. 142, 10125–10131 (2020).
Wu, W. & Jiang, H. Palladium catalyzed oxidation of unsaturated hydrocarbons using molecular oxygen. Acc. Chem. Res. 45, 1736–1748 (2012).
Tang, C., Qiu, X., Cheng, Z. & Jiao, N. Molecular oxygen-mediated oxygenation reactions involving radicals. Chem. Soc. Rev. 50, 8067–8101 (2021).
Punniyamurthy, T., Velusamy, S. & Iqbal, J. Recent advances in transition metal catalyzed oxidation of organic substrates with molecular oxygen. Chem. Rev. 105, 2329–2363 (2005).
Liang, Y.-F. & Jiao, N. Oxygenation via C−H/C−C bond activation with molecular oxygen. Acc. Chem. Res. 50, 1640–1653 (2017).
Wang, D., Weinstein, A. B., White, P. B. & Stahl, S. S. Ligand promoted palladium-catalyzed aerobic oxidation reactions. Chem. Rev. 118, 2636–2679 (2018).
Vaughan, B. A., Webster-Gardiner, M. S., Cundari, T. R. & Gunnoe, T. B. A rhodium catalyst for single-step styrene production from benzene and ethylene. Science 348, 421–424 (2015).
Baumann, H. et al. Natural fats and oils-renewable raw Materials for the chemical industry. Angew. Chem. Int. Ed. 27, 41–62 (1988).
Corma, A., Iborra, S. & Velty, A. Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107, 2411–2502 (2007).
Smidt, J. et al. The oxidation of olefins with palladium chloride catalysts. Angew. Chem., Int. Ed. 1, 80–88 (1962).
Jira, R. Acetaldehyde from Ethylene-A retrospective on the discovery of the Wacker process. Angew. Chem., Int. Ed. 48, 9034–9037 (2009).
Hess, J. S., Leelasubcharoen, S., Rheingold, A. L., Doren, D. J. & Theopold, K. H. Spin surface crossing in chromium-mediated Olefin Epoxidation with O2. J. Am. Chem. Soc. 124, 2454–2455 (2002).
Schröder, K. et al. A biomimetic iron catalyst for the Epoxidation of Olefins with molecular oxygen at room temperature. Angew. Chem., Int. Ed. 50, 1425–1429 (2011).
Koya, S., Nishioka, Y., Mizoguchi, H., Uchida, T. & Katsuki, T. Asymmetric Epoxidation of conjugated Olefins with dioxygen. Angew. Chem., Int. Ed. 51, 8243–8246 (2012).
Zhu, B. et al. Selective aerobic oxygenation of tertiary allylic alcohols with molecular oxygen. Angew. Chem. Int. Ed. 58, 11028–11032 (2019).
Urgoitia, G., SanMartin, R., Herrero, M. T. & Dominguez, E. Aerobic cleavage of alkenes and alkynes into carbonyl and carboxyl compounds. ACS Catal. 7, 3050–3060 (2017).
Rajagopalan, A., Lara, M. & Kroutil, W. Oxidative alkene cleavage by chemical and enzymatic methods. Adv. Synth. Catal. 355, 3321–3335 (2013).
Nakamura, A. & Nakada, M. Allylic oxidations in natural product synthesis. Synthesis 45, 1421–1451 (2013).
Catino, A. J., Forslund, R. E. & Doyle, M. P. Dirhodium(II) Caprolactamate: An exceptional catalyst for allylic oxidation. J. Am. Chem. Soc. 126, 13622–13623 (2004).
Yu, J.-Q. & Corey, E. J. A mild, catalytic, and highly selective method for the oxidation of α,β-Enones to 1,4-Enediones. J. Am. Chem. Soc. 125, 3232–3233 (2003).
Wang, Y., Chen, X., Jin, H. & Wang, Y. Mild and Practical Dirhodium(II)/NHPI-mediated allylic and benzylic oxidations with air as the oxidant. Chem. -Eur. J. 25, 14273–14277 (2019).
Horn, E. J. et al. Scalable and sustainable electrochemical allylic C−H oxidation. Nature 533, 77–81 (2016).
Liu, C. et al. Visible-light-enabled allylic C−H Oxidation: metal-free photocatalytic generation of enones. ACS Catal. 12, 1375–1381 (2022).
Jiang, Y., Chen, S., Chen, Y., Gu, A. & Tang, C. Sustainable aerobic allylic C−H bond oxidation with heterogeneous iron catalyst. J. Am. Chem. Soc. 146, 2769–2778 (2024).
Youn, S. W., Kim, B. S. & Jagdale, A. R. Pd-catalyzed sequential C-C bond formation and cleavage: evidence for an unexpected generation pf Arylpalladium(II) species. J. Am. Chem. Soc. 134, 11308–11311 (2012).
Ye, J. et al. Remote C-H alkylation and C-C bond cleavage enabled by an in situ generated palladacycle. Nat. Chem. 9, 361–368 (2017).
Wang, J. J., Wei, D. H., Duan, Z. & Mathey, F. Cleavage of the Inert C(sp2)-Ar σ-bond of alkenes by a spatial constrained interaction with Phosphinidene. J. Am. Chem. Soc. 142, 20973–20978 (2020).
Liu, J. et al. Selective Dealkenylative functionalization of styrenes via C-C bond cleavage. Research 2020, 7947029 (2020).
Lasso, J. D. et al. A general platform for visible light sulfonylation reactions enabled by catalytic Triarylamine EDA complexes. J. Am. Chem. Soc. 146, 2583–2592 (2024).
Zhao, G., Lim, S., Musaev, D. G. & Ngai, M. Y. Expanding reaction profile of allyl carboxylates via 1,2-Radical Migration (RaM): Visible-light-induced phosphine-catalyzed 1,3-Carbobromination of Allyl carboxylates. J. Am. Chem. Soc. 145, 8275–8284 (2023).
Chen, Z.-M., Zhang, X.-M. & Tu, Y.-Q. Radical aryl migration reactions and synthetic applications. Chem. Soc. Rev. 44, 5220–5245 (2015).
Studer, A. & Bossart, M. Radical aryl migration reactions. Tetrahedron 57, 9649–9667 (2001).
Smeu, M. & DiLabio, G. A. Rearrangement of the 1,1-Diphenylethoxyl radical is not concerted but occurs through a bridged intermediate. J. Org. Chem. 72, 4520–4523 (2007).
Salamone, M., Bietti, M., Calcagni, A. & Gente, G. Phenyl bridging in ring-substituted cumyloxyl radicals. a product and time-resolved kinetic study. Org. Lett. 11, 2453–2456 (2009).
Bietti, M., Calcagni, A., Cicero, D. O., Martella, R. & Salamone, M. The O-neophyl rearrangement of 1,1-diarylalkoxyl radicals. Experimental evidence for the formation of an intermediate 1-oxaspiro[2,5]octadienyl radical. Tetrahedron Lett. 51, 4129–4131 (2010).