Pimentel, G. C. & McClellan, A. L. Hydrogen bonding. Annu. Rev. Phys. Chem. 22, 347–385 (1971).
Kollman, P. A. & Allen, L. C. Theory of the hydrogen bond. Chem. Rev. 72, 283–303 (1972).
Steiner, T. The hydrogen bond in the solid state. Angew. Chem. Int. Ed. 41, 48–76 (2002).
Buemi, G. in Hydrogen Bonding—New Insights (ed. Grabowski, S. J.) 51–107 (Springer, 2006).
Aakeröy, C. B. & Seddon, K. R. The hydrogen bond and crystal engineering. Chem. Soc. Rev. 22, 397–407 (1993).
Jeffrey, G. A. & Saenger, W. Hydrogen Bonding in Biological Structures (Springer, 1991).
Doster, W. The dynamical transition of proteins, concepts and misconceptions. Eur. Biophys. J. 37, 591–602 (2008).
Dahl, P. J. et al. A 300-fold conductivity increase in microbial cytochrome nanowires due to temperature-induced restructuring of hydrogen bonding networks. Sci. Adv. 8, eabm7193 (2022).
Portfield, W. W. (ed.) in Inorganic Chemistry 2nd edn, 885–893 (Academic, 1993).
Mott, N. F. Metal–insulator transition. Rev. Mod. Phys. 40, 677–683 (1968).
Yang, Z., Ko, C. & Ramanathan, S. Oxide electronics utilizing ultrafast metal-insulator transitions. Annu. Rev. Mater. Res. 41, 337–367 (2011).
Wang, Z. et al. Resistive switching materials for information processing. Nat. Rev. Mater. 5, 173–195 (2020).
Asamitsu, A., Tomioka, Y., Kuwahara, H. & Tokura, Y. Current switching of resistive states in magnetoresistive manganites. Nature 388, 50–52 (1997).
Qazilbash, M. M. et al. Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science 318, 1750–1753 (2007).
Liang, Y. G. et al. Tuning the hysteresis of a metal-insulator transition via lattice compatibility. Nat. Commun. 11, 3539 (2020).
Tian, N. et al. Dimensionality-driven metal to Mott insulator transition in two-dimensional 1T-TaSe2. Natl Sci. Rev. 11, nwad144 (2024).
Zhang, W. et al. Role of vacancies in metal–insulator transitions of crystalline phase-change materials. Nat. Mater. 11, 952–956 (2012).
Chu, C. W., Harper, J. M. E., Geballe, T. H. & Greene, R. L. Pressure dependence of the metal-insulator transition in tetrathiofulvalinium tetracyanoquinodimethane (TTF-TCNQ). Phys. Rev. Lett. 31, 1491–1494 (1973).
Lee, S.-H., Goh, J. S. & Cho, D. Origin of the insulating phase and first-order metal-insulator transition in 1T-TaS2. Phys. Rev. Lett. 122, 106404 (2019).
Lu, N. et al. Electric-field control of tri-state phase transformation with a selective dual-ion switch. Nature 546, 124–128 (2017).
Li, L. et al. Manipulating the insulator–metal transition through tip-induced hydrogenation. Nat. Mater. 21, 1246–1251 (2022).
Yi, W. et al. Biological plausibility and stochasticity in scalable VO2 active memristor neurons. Nat. Commun. 9, 4661 (2018).
Ueda, A. et al. Hydrogen-bond-dynamics-based switching of conductivity and magnetism: a phase transition caused by deuterium and electron transfer in a hydrogen-bonded purely organic conductor crystal. J. Am. Chem. Soc. 136, 12184–12192 (2014).
Isono, T. et al. Hydrogen bond-promoted metallic state in a purely organic single-component conductor under pressure. Nat. Commun. 4, 1344 (2013).
Zhou, J. et al. Layered intercalation materials. Adv. Mater. 33, 2004557 (2021).
Passarelli, J. V. et al. Tunable exciton binding energy in 2D hybrid layered perovskites through donor–acceptor interactions within the organic layer. Nat. Chem. 12, 672–682 (2020).
Jin, S. et al. High-Tc superconducting phases in organic molecular intercalated iron selenides: synthesis and crystal structures. Chem. Commun. 53, 9729–9732 (2017).
Zhang, H. et al. Enhancement of superconductivity in organic-inorganic hybrid topological materials. Sci. Bull. 65, 188–193 (2020).
Coronado, E. et al. Coexistence of superconductivity and magnetism by chemical design. Nat. Chem. 2, 1031–1036 (2010).
Wan, C. et al. Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nat. Mater. 14, 622–627 (2015).
Wang, N. et al. Transition from ferromagnetic semiconductor to ferromagnetic metal with enhanced Curie temperature in Cr2Ge2Te6 via organic ion intercalation. J. Am. Chem. Soc. 141, 17166–17173 (2019).
Ying, T. P. et al. Observation of superconductivity at 30∼46 K in AxFe2Se2(A = Li, Na, Ba, Sr, Ca, Yb and Eu). Sci. Rep. 2, 426 (2012).
Ying, T. et al. Superconducting phases in potassium-intercalated iron selenides. J. Am. Chem. Soc. 135, 2951–2954 (2013).
Sun, R. et al. Intercalating anions between terminated anion layers: unusual ionic S–Se bonds and hole-doping induced superconductivity in S0.24(NH3)0.26Fe2Se2. J. Am. Chem. Soc. 141, 13849–13857 (2019).
Fan, X. et al. Nematicity and superconductivity in orthorhombic superconductor Na0.35(C3N2H10)0.426Fe2Se2. Phys. Rev. Mater. 2, 114802 (2018).
Kobayashi, M. & Tanaka, H. The reversibility and first-order nature of liquid–liquid transition in a molecular liquid. Nat. Commun. 7, 13438 (2016).
Luo, J.-B., Wei, J.-H., Zhang, Z.-Z., He, Z.-L. & Kuang, D.-B. A melt-quenched luminescent glass of an organic–inorganic manganese halide as a large-area scintillator for radiation detection. Angew. Chem. Int. Ed. 62, e202216504 (2023).
Benoit, M., Marx, D. & Parrinello, M. Tunnelling and zero-point motion in high-pressure ice. Nature 392, 258–261 (1998).
Goncharov, A. F. et al. Dynamic ionization of water under extreme conditions. Phys. Rev. Lett. 94, 125508 (2005).
Ye, Q.-J., Zhuang, L. & Li, X.-Z. Dynamic nature of high-pressure ice VII. Phys. Rev. Lett. 126, 185501 (2021).
Hedges, L. O., Jack, R. L., Garrahan, J. P. & Chandler, D. Dynamic order-disorder in atomistic models of structural glass formers. Science 323, 1309–1313 (2009).
Hernandez, J.-A. & Caracas, R. Superionic–superionic phase transitions in body-centered cubic H2O-ice. Phys. Rev. Lett. 117, 135503 (2016).
Reinhardt, A. et al. Thermodynamics of high-pressure ice phases explored with atomistic simulations. Nat. Commun. 13, 4707 (2022).
Tayran, C. & Çakmak, M. Charge density wave in a SnSe2 layer on and the effect of surface hydrogenation. Phys. Chem. Chem. Phys. 24, 6820–6827 (2022).
Smith, A. J., Meek, P. E. & Liang, W. Y. Raman scattering studies of SnS2 and SnSe2. J. Phys. C Solid State Phys. 10, 1321 (1977).
Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).
Porezag, D. & Pederson, M. R. Infrared intensities and Raman-scattering activities within density-functional theory. Phys. Rev. B 54, 7830–7836 (1996).
Grimme, S., Bannwarth, C. & Shushkov, P. A robust and accurate tight-binding quantum chemical method for structures, vibrational frequencies and noncovalent interactions of large molecular systems parametrized for all spd-block elements (Z = 1–86). J. Chem. Theory Comput. 13, 1989–2009 (2017).
Kühne, T. D. et al. CP2K: an electronic structure and molecular dynamics software package – Quickstep: efficient and accurate electronic structure calculations. J. Chem. Phys. 152, 194103 (2020).
Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).